Abstract

SUMMARYDairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertilizer management practices are critical to achieve this. In the present study the effect of timing and rate of nitrogen (N) fertilizer application on pasture production and N losses, either via direct leaching of fertilizer N or indirectly through consumption of N in pasture and subsequent excretion via dairy cow grazing, was modelled. The Agricultural Production Systems Simulator (APSIM) was first tested with experimental data from N fertilizer response experiments conducted on a well-drained soil in the Waikato region of New Zealand. The model was then used in a 20-year simulation to investigate the effect of fertilizer management on the impacts on potential N leaching losses. Year-to-year variability was assessed by incorporating 20 years of climate data into the model. Modelling indicated that N fertilization at rates of 140 and 220 kg N/ha/year, applied in four split applications and avoiding application in winter months, could increase pasture yield on average by 2·2–3·0 t dry matter (DM)/ha (25–38%). There were some significant amounts of direct leaching in some years, related to environmental conditions. The maximum loss was as high as 61 kg N/ha at an N application rate of 220 kg N/ha/year, in a year with low pasture production and high rainfall following fertilizer application. In general, however, the risk of direct N leaching from applied fertilizer was low. It seems the main effect of N fertilization is to increase the risk of indirect N leaching, due to increased N intake and excretion. The modelling indicated that the major contribution to increased indirect N leaching risk was from the extra DM grown (more urine deposited per ha). Increased N concentration in the pasture due to fertilization and the resultant extra partitioning of excretal N to urine had only a minor effect on indirect leaching losses. The exception was N fertilizer applied in late winter/early spring (July), where fertilizer N (55 kg/ha) increased pasture N concentration byc. 25%, suggesting that the N concentration in urine patch areas could increase fromc. 550 to 840 kg N/ha. Further measurements are required to test the hypothesis developed from the modelling that the main effect of N fertilizer on urinary N leaching is by increasing DM production rather than increasing pasture N concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call