Abstract

Radars can be used to obtain turbulence parameters by measuring the width of the Doppler spectrum of returned power. Other effects can contribute to the Doppler-spectrum width, including short-period gravity waves, making turbulence parameter measurements more difficult. In this paper, an experimental study of the effect of gravity waves on the width of the Doppler spectrum is presented. The data were obtained using the Poker Flat 50 MHz VHP radar. A parameter Y i is used to describe the discrepancy between the width of spectra sampled over a long period of time and that taken over a shorter time. If Y i is not significantly different from 1.0, no contamination is present. The experimental data considered were of a time resolution that allowed the period and amplitude of the contaminating gravity wave to be determined. A theoretical expression for gravity wave contamination proposed by Hocking [(1988) J. geophys. Res. 93, 2475–2491] was tested and found to agree with measurements. It was also found that non-unity values of Y i occurred in some cases. This suggests that, at commonly used sampling times, short-period gravity waves can contaminate spectral width estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.