Abstract
This work aimed to evaluate the accuracy of analytical models for predicting the behavior of concrete-filled steel tubular (CFST) columns via finite element analysis coupled with physical nonlinearity. The methodology involved an extensive review of experimental tests from the literature, numerical modeling of columns with different configurations, and a comparison of the results obtained with available experimental data. Several characteristics were evaluated, such as the load capacity, confinement factor, and relative slenderness. The numerical model agreed well with the experimental results, with a less than 10% relative error. The results indicated that analytical models of the Chinese (GB 50936) and European (EC4) codes overestimated some load capacity values (up to 14.9% and 8.7%, respectively). In comparison, the American (AISC 360) and Brazilian (NBR 8800) standards underestimated the ultimate loads (23.3% and 31.6%, respectively). An approach coefficient β is proposed, contributing to safer and more efficient design practices in structural engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.