Abstract

ABSTRACTSynthetic aperture radar (SAR) compact polarimetry (CP) systems are of great interest for large area monitoring because of their ability to acquire data in a wider swath compared to full polarimetry (FP) systems and a significant improvement in information content compared to single or dual polarimetry (DP) sensors. In this study, we compared the potential of DP, FP, and CP SAR data for wetland classification in a case study located in Newfoundland, Canada. The DP and CP data were simulated using full polarimetric RADARSAT-2 data. We compared the classification results for different input features using an object-based random forest classification. The results demonstrated the superiority of FP imagery relative to both DP and CP data. However, CP indicated significant improvements in classification accuracy compared to DP data. An overall classification accuracy of approximately 76% and 84% was achieved with the inclusion of all polarimetric features extracted from CP and FP data, respectively. In summary, although full polarimetric SAR data provide the best classification accuracy, the results demonstrate the potential of RADARSAT Constellation Mission for mapping wetlands in a large landscape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call