Abstract

Monitoring chlorophyll-a (Chl-a) concentrations in inland waters is crucial for water quality management, since Chl-a is a proxy for phytoplankton biomass and, thus, for ecological health of a water environment. Chl-a concentration can be retrieved through the inherent optical properties (IOPs) of a water system, which, in turn, can be remotely sensed obtained. Quasi-analytical algorithm (QAA), originally developed for ocean waters, can also retrieve IOPs for inland waters after re-parameterizations. This study is aimed at assessing the performance of sixteen schemes composed by QAA original and re-parameterized versions followed by models that use absorption coefficients as inputs for estimating Chl-a concentration in Ibitinga reservoir, located at Tietê River cascading system, São Paulo State, Brazil. It was verified that only QAAV5 based schemes were able to obtain reasonable estimates for image data and that by four models tested presented similar and acceptable results for QAAV5 outputs. The best model were applied to a Ocean and Land Colour Instrument (OLCI) image. Light absorption in the reservoir showed to be dominated by colored dissolved organic matter (CDOM), and wide spatial and temporal variability of optical and water quality properties was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.