Abstract

Monitoring vectors is relevant to ascertain transmission of lymphatic filariasis (LF). This may require the best sampling method that can capture high numbers of specific species to give indication of transmission. Gravid anophelines are good indicators for assessing transmission due to close contact with humans through blood meals. This study compared the efficiency of an Anopheles gravid trap (AGT) with other mosquito collection methods including the box and the Centres for Disease Control and Prevention gravid, light, exit and BioGent-sentinel traps, indoor resting collection (IRC) and pyrethrum spray catches across two endemic regions of Ghana. The AGT showed high trapping efficiency by collecting the highest mean number of anophelines per night in the Western (4.6) and Northern (7.3) regions compared with the outdoor collection methods. Additionally, IRC was similarly efficient in the Northern region (8.9) where vectors exhibit a high degree of endophily. AGT also showed good trapping potential for collecting Anopheles melas which is usually difficult to catch with existing methods. Screening of mosquitoes for infection showed a 0.80-3.01% Wuchereria bancrofti and 2.15-3.27% Plasmodium spp. in Anopheles gambiae. The AGT has shown to be appropriate for surveying Anopheles populations and can be useful for xenomonitoring for both LF and malaria.

Highlights

  • Lymphatic filariasis (LF) is a neglected tropical disease that causes debilitating, acute and chronic morbidities in affected individuals. It is caused by three mosquito-borne parasitic worms: Wuchereria bancrofti, which accounts for 90% of cases recorded globally (Ottesen, 2006), Brugia malayi and Brugia timori accounting for the remaining 10%

  • A small number of head/thorax pools were positive for W. bancrofti (0.3%, 95% confidence interval (CI) 0.01–1.5) and Plasmodium spp. (0.9%, 95% CI 0.2–2.5), indicating the developing stage of filarial worms were present in the thorax, and the infective stage sporozoites were present in the salivary glands

  • This study reports on the first evaluation of an Anopheles gravid trap for monitoring LF and malaria in vectors in Ghana

Read more

Summary

Introduction

Lymphatic filariasis (LF) is a neglected tropical disease that causes debilitating, acute and chronic morbidities in affected individuals. The tools available for transmission assessment include; immunochromatograhic test (ICT) [such as filarial test strip (FTS)], ELISA, polymerase chain reaction (PCR) and mf detection by microscopy (WHO, 2011) These tools require blood collection from large numbers of community volunteers. Monitoring vectors for the presence of parasite DNA (xenomonitoring) is an important assessment tool for LF elimination programmes, with the advantage that it provides a real-time estimate of microfilaria in the community members (Okorie and de Souza, 2016). As microfilariae (mf) prevalence in human populations becomes low due to MDA, the time and cost involved in processing such large numbers remain a challenge (Burkot and Ichimori, 2002) In this instance, molecular xenomonitoring, a method which allows for processing samples within a shorter time with high precision will improve sample processing (Derua et al, 2017). Blood samples were screened by microscopy using the counting chamber technique described by Agbolade and Akinboye (2005)

Materials and methods
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.