Abstract
Marine heatwaves (MHWs) are becoming increasingly frequent and intense around China, impacting marine ecosystems and coastal communities. Accurate forecasting of MHWs is crucial for their management and mitigation. In this study, we assess the forecasting ability of the global eddy-resolving ocean forecast system LICOM Forecast System (LFS) for the MHW events in October 2021 around China. Our results show that the 1-day lead forecast by the LFS accounts for up to 79% of the observed MHWs, with the highest skill during the initial and decay periods. The forecasted duration and intensity of the MHW event are consistent with observations but with some deviations in specific regions of the Yellow and South China seas. A detailed analysis of the heat budget reveals that the forecasted shortwave radiation flux is a key factor in the accuracy of the forecasted MHW duration and intensity. The oceanic dynamic term also greatly contributes to the accuracy in the southern Yellow Sea. In addition, the increasing bias of the forecasted duration and intensity with lead time are mainly caused by the underestimated shortwave radiation. Our findings suggest that improving the accuracy of oceanic dynamic processes and surface radiation fluxes in the LFS could be a promising direction to enhance the forecasting ability of marine extreme events such as MHWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.