Abstract

The research provided scientific evidences for improved rice straw management. Rice cultivation with in-field burning of rice straw is the worst option with the lowest energy efficiency and highest air pollution emission. This article comprises a comparative assessment of energy efficiency and the environmental footprint of rice production using four different rice straw management scenarios, namely, straw retained, straw burned, partial straw removal, and complete straw removal. Paddy yield, grain quality, and energy balance were assessed for two seasons while greenhouse gas emissions (GHGE) were measured weekly starting from land preparation through to the cropping and fallow period. Despite the added energy requirements in straw collection and transport, the use of collected rice straw for mushroom production can increase the net energy obtained from rice production systems by 10–15% compared to burning straw in the field. Partial and complete removal of rice straw reduces GHGE by 30% and 40% compared to complete straw retention, respectively.

Highlights

  • The research provided scientific evidences for improved rice straw management

  • Despite the added energy requirements in straw collection and transport, the use of collected rice straw for mushroom production can increase the net energy obtained from rice production systems by 10–15% compared to burning straw in the field

  • The treatments were classified as - all straw retained in the field after harvest (SRt), straw burning after harvest (SB), partial straw removal (PSRm) where about 60% rice straw was removed from the field after harvest and complete straw removal (CSRm) where both stubble and straw were removed from the field after harvest

Read more

Summary

Introduction

The research provided scientific evidences for improved rice straw management. Rice cultivation with in-field burning of rice straw is the worst option with the lowest energy efficiency and highest air pollution emission. This article comprises a comparative assessment of energy efficiency and the environmental footprint of rice production using four different rice straw management scenarios, namely, straw retained, straw burned, partial straw removal, and complete straw removal. In addition to environmental impacts, emission from in-field rice straw burning can have serious negative consequences for human health as a result of the formation of suspended particulate matter (PM2.5 and PM10) in the air and the production of toxic gases[5,6,7]. According to Gadde et al.[9], the annual energy potential of rice straw produced in India, Thailand, and the Philippines, as a renewable fuel, is 312, 238, and 142 petajoule (PJ), respectively, at 100% collection efficiency, assuming that all harvested straw was used for energy production. Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr crop, soil, and water management all straw can be removed from flooded rice fields after harvest without reducing the levels of soil organic matter or soil fertility[10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call