Abstract

Lower hybrid (LH) waves (Ωci⪡ω⪡Ωce, where Ωi,e≡Zi,eeB/mi,ec) have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons and consequently are well-suited to driving current. Established modeling techniques use Wentzel–Kramers–Brillouin (WKB) expansions with self-consistent non-Maxwellian distributions. Higher order WKB expansions have shown some effects on the parallel wave number evolution and consequently on the damping due to diffraction [G. Pereverzev, Nucl. Fusion 32, 1091 (1991)]. A massively parallel version of the TORIC full wave electromagnetic field solver valid in the LH range of frequencies has been developed [J. C. Wright et al., Comm. Comp. Phys. 4, 545 (2008)] and coupled to an electron Fokker–Planck solver CQL3D [R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting, Montreal, 1992 (IAEA Institute of Physics Publishing, Vienna, 1993), USDOC/NTIS Document No. DE93002962, pp. 489–526] in order to self-consistently evolve nonthermal electron distributions characteristic of LH current drive (LHCD) experiments in devices such as Alcator C-Mod and ITER (B0≈5 T, ne0≈1×1020 m−3). These simulations represent the first ever self-consistent simulations of LHCD utilizing both a full wave and Fokker–Planck calculation in toroidal geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.