Abstract

A suite of 30 primarily estrogenic organic wastewater contaminants was measured in several influent/effluent wastewater samples from four municipal wastewater treatment plants and effluents from one bleached kraft pulp mill (BKME) using an ultra-trace analytical method based on gas chromatography-high resolution mass spectroscopy (GC-HRMS). In vitro recombinant yeast assay detection of the estrogenic equivalent (EEq) on whole and solid phase extracted (SPE) and fractionated wastewater was also performed. 19-norethindrone was the most frequently detected and abundant (26-224 ng/L) of all the synthetic estrogens/progesterones in the influent samples. 17alpha-ethinylestradiol was the more frequently detected synthetic estrogen/progesterone in the effluents occurring at or below 5 ng/L with some sporadic occurrences of up to 178 ng/L. The greatest levels of steroidal estrogens in municipal effluents were E1>E2>E3 which were all <20 ng/L. Nonylphenol and di(2-ethylhexyl) phthalate were found to be the highest non-steroidal synthetic compounds surveyed in both municipal influent and effluent samples, both occurring at 6-7 microg/L in municipal effluents. BKME contained relatively large amounts of the plant sterol stigmasterol (4 microg/L) but low amounts of fecal sterols, and steroidal estrogens (E2 only at 6 ng/L) when compared to the municipal effluents. In vitro EEq in the wastewater surveyed ranged from 9-106 ng E2/L and ranked from municipal influent>municipal effluent approximately BKME, with most of the estrogenicity fractionating in the 100% methanol SPE fraction followed by a secondary amount in the diethyl ether (for municipal) or methyl-tert butyl ether (for BKME) SPE fractions. Most correlations between chemical and in vitro estrogenic equivalency were weak (p>0.05 in most cases). Unexpected inverse correlations between in vitro estrogenic activity and concentrations of the estrogenic contaminant bisphenol A were found which likely contributed to the weakness of these correlations. A modified toxicity identification and evaluation procedure was continued with the SPE extracts from the more potent 100% methanol SPE fractions of municipal effluent. High performance liquid chromatography band elution retention times, based on in vitro estrogen detection, indicated that steroidal estrogens such as E2 were responsible for most of the estrogenicity of the samples. Subsequent collection and GC-MS analysis of active bands did not confirm the presence of steroidal estrogens, but expanded the possibility of phthalate esters (i.e. dibutyl phthalate) and natural sterols (i.e. beta-sitosterol) contributing to the overall estrogenic load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call