Abstract

BackgroundEsophageal pressure measurement is a minimally invasive monitoring process that assesses respiratory mechanics in patients with acute respiratory distress syndrome. Airway pressure release ventilation is a relatively new positive pressure ventilation modality, characterized by a series of advantages in patients with acute respiratory distress syndrome.Case presentationWe report a case of a 55-year-old chilean female, with preexisting hypertension and recurrent renal colic who entered the cardiosurgical intensive care unit with signs and symptoms of urinary sepsis secondary to a right-sided obstructive urolithiasis. At the time of admission, the patient showed signs of urinary sepsis, a poor overall condition, hemodynamic instability, tachycardia, hypotension, and needed vasoactive drugs. Initially the patient was treated with volume control ventilation. Then, ventilation was with conventional ventilation parameters described by the Acute Respiratory Distress Syndrome Network. However, hemodynamic complications led to reduced airway pressure. Later she presented intraabdominal hypertension that compromised the oxygen supply and her ventilation management. Considering these records, an esophageal manometry was used to measure distending lung pressure, that is, transpulmonary pressure, to protect lungs. Initial use of the esophageal balloon was in a volume-controlled modality (deep sedation), which allowed the medical team to perform inspiratory and expiratory pause maneuvers to monitor transpulmonary plateau pressure as a substitute for pulmonary distension and expiratory pause and determine transpulmonary positive end-expiratory pressure. On the third day of mechanical respiration, the modality was switched to airway pressure release ventilation. The use of airway pressure release ventilation was associated with reduced hemodynamic complications and kept transpulmonary pressure between 0 and 20 cmH2O despite a sustained high positive end-expiratory pressure of 20 cmH2O.ConclusionThe application of this technique is shown in airway pressure release ventilation with spontaneous ventilation, which is then compared with a controlled modality that requires a lesser number of sedative doses and vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry.

Highlights

  • Esophageal pressure (Pes) measurement is a minimally invasive monitoring method used to assess respiratory mechanics in acute respiratory distress syndrome [1]

  • Full list of author information is available at the end of the article. The application of this technique is shown in airway pressure release ventilation with spontaneous ventilation, which is compared with a controlled modality that requires a lesser number of sedative doses and vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry

  • Esophageal balloon catheters can be connected to specific monitoring devices, such as pressure ports, mechanical ventilator accessories, or multiparametric monitor pressure transductors [1]

Read more

Summary

Conclusion

The application of this technique is shown in airway pressure release ventilation with spontaneous ventilation, which is compared with a controlled modality that requires a lesser number of sedative doses and vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry.

Introduction
Discussion and conclusions
Findings
Ethical approval and consent to participate
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.