Abstract

The current study pertains to the influence of chosen process parameters on erosive wear of F6NM stainless steel. Response surface methodology was used to plan experiments. Response surface method with face centred composite design has been adopted to develop a regression model. Development of erosive wear model was based on five factors, which included sediment concentration (A), particle size (B), angle of impact (C), test duration (D) and rotational speed of slurry (E). A mathematical model was developed to predict the deterioration through wear on F6NM stainless steel and the appropriateness of the model was certified using analysis of variance. A robust correlation is attained between the model predicted and experimentally obtained values for weight loss and the percentage of error is 12%. On the basis of mathematical model, single objective optimisation of parameters has been performed with genetic algorithm (GA) technique and this method yields reduction of 34.78% for material wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.