Abstract

Reliable and fine-resolution electric power consumption (EPC) is essential for effective urban electricity allocation and planning. Currently, EPC data exists mainly as statistics with low resolution. Many studies estimate fine-resolution EPC based on the positive correction between stable nighttime light and EPC distribution. However, EPC is related to various factors other than nighttime light and is spatially non-stationary. Yet this has been ignored in current research. This study developed a novel method to estimate EPC at 500 m resolution by considering spatially non-stationary through fusing geospatial data and high-resolution satellite images. Deep transfer learning and statistical methods were used to extract socio-economic, population density, and landscape features to describe EPC distribution from multi-source geospatial data. Finally, a random forest regression (RFR) model with features and EPC statistics is established to estimate fine-resolution EPC. A study area of Shenzhen city, China, is employed to evaluate the proposed method. The R2 between predicted EPC and statistical EPC is 0.82 at sub-district level in 2013, which is higher than an existing EPC product (Shi’s product) with R2=0.46, illustrating the effectiveness of the proposed method. Moreover, the EPC distribution for Shenzhen from 2013 to 2019 was estimated. Furthermore, the spatiotemporal dynamic of EPC was analyzed at the pixel and sub-district levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call