Abstract
ObjectivesStrong data quality (DQ) is a precursor to strong data use. In resource limited settings, routine DQ assessment (DQA) within electronic medical record (EMR) systems can be resource-intensive using manual methods such as audit and chart review; automated queries offer an efficient alternative. This DQA focused on Haiti’s national EMR – iSanté – and included longitudinal data for over 100,000 persons living with HIV (PLHIV) enrolled in HIV care and treatment services at 95 health care facilities (HCF). MethodsThis mixed-methods evaluation used a qualitative Delphi process to identify DQ priorities among local stakeholders, followed by a quantitative DQA on these priority areas. The quantitative DQA examined 13 indicators of completeness, accuracy, and timeliness of retrospective data collected from 2005 to 2013. We described levels of DQ for each indicator over time, and examined the consistency of within-HCF performance and associations between DQ and HCF and EMR system characteristics. ResultsOver all iSanté data, age was incomplete in <1% of cases, while height, pregnancy status, TB status, and ART eligibility were more incomplete (approximately 20–40%). Suspicious data flags were present for <3% of cases of male sex, ART dispenses, CD4 values, and visit dates, but for 26% of cases of age. Discontinuation forms were available for about half of all patients without visits for 180 or more days, and >60% of encounter forms were entered late. For most indicators, DQ tended to improve over time. DQ was highly variable across HCF, and within HCFs DQ was variable across indicators. In adjusted analyses, HCF and system factors with generally favorable and statistically significant associations with DQ were University hospital category, private sector governance, presence of local iSante server, greater HCF experience with the EMR, greater maturity of the EMR itself, and having more system users but fewer new users. In qualitative feedback, local stakeholders emphasized lack of stable power supply as a key challenge to data quality and use of the iSanté EMR. ConclusionsVariable performance on key DQ indicators across HCF suggests that excellent DQ is achievable in Haiti, but further effort is needed to systematize and routinize DQ approaches within HCFs. A dynamic, interactive “DQ dashboard” within iSanté could bring transparency and motivate improvement. While the results of the study are specific to Haiti’s iSanté data system, the study’s methods and thematic lessons learned holdgeneralized relevance for other large-scale EMR systems in resource-limited countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.