Abstract

The experimental determination of bioaccumulation is challenging, and a number of approaches have been developed for its prediction. It is important to assess the applicability of these predictive approaches to nanomaterials (NMs), which have been shown to bioaccumulate. The octanol/water partition coefficient (KOW ) may not be applicable to some NMs that are not found in either the octanol or water phases but rather are found at the interface. Thus the KOW values obtained for certain NMs are shown not to correlate well with the experimentally determined bioaccumulation. Implementation of quantitative structure-activity relationships (QSARs) for NMs is also challenging because the bioaccumulation of NMs depends on nano-specific properties such as shape, size, and surface area. Thus there is a need to develop new QSAR models based on these new nanodescriptors; current efforts appear to focus on digital processing of NM images as well as the conversion of surface chemistry parameters into adsorption indices. Water solubility can be used as a screening tool for the exclusion of NMs with short half-lives. Adaptation of fugacity/aquivalence models, which include physicochemical properties, may give some insights into the bioaccumulation potential of NMs, especially with the addition of a biota component. The use of kinetic models, including physiologically based pharmacokinetic models, appears to be the most suitable approach for predicting bioaccumulation of NMs. Furthermore, because bioaccumulation of NMs depends on a number of biotic and abiotic factors, it is important to take these factors into account when one is modeling bioaccumulation and interpreting bioaccumulation results. Environ Toxicol Chem 2018;37:2972-2988. © 2018 SETAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.