Abstract

For autonomous assembly operations by a robot, it is required to build a planning function that can generate a series of operations to reach a goal state. This paper describes an automatic planning algorithm that synthesizes the assembly operation strategies. By making an criterion function based on the difficulty of state transitions be minimum, the method can find an optimal path based on the Contact State Network. The Degree of Constraint is proposed by regarding the assembly task as a process to change the constraint, state of the moving object. Then several policies for determining State Transition Difficulty are discussed where the variation of the degree of constraint and the shape information from the geometric model of objects are considered. A criterion function for state transitions is defined based on the discussed policies. Lastly, an algorithm which plans an optimal state transition path from an initial state to a goal state is proposed. Some examples are given to show the validity of this algorithm

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.