Abstract

Physics-informed neural networks (PINNs) are proved methods that are effective in solving some strongly nonlinear partial differential equations (PDEs), e.g., Navier-Stokes equations, with a small amount of boundary or interior data. However, the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported. The present paper proposes an artificial viscosity (AV)-based PINN for solving the forward and inverse flow problems. Specifically, the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics (CFD) to stabilize the simulation of flow at high Reynolds numbers. The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re = 1 000 and the inverse problem derived from two-dimensional film boiling. The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.