Abstract

Sensory neurons within skin form an interface between the external physical reality and the inner tactile perception. This interface enables sensory information to be organized identified, and interpreted through perceptual learning-the process whereby the sensing abilities improve through experience. Here, an artificial sensory neuron that can integrate and differentiate the spatiotemporal features of touched patterns for recognition is shown. The system comprises sensing, transmitting, and processing components that are parallel to those found in a sensory neuron. A resistive pressure sensor converts pressure stimuli into electric signals, which are transmitted to a synaptic transistor through interfacial ionic/electronic coupling via a soft ionic conductor. Furthermore, the recognition error rate can be dramatically decreased from 44% to 0.4% by integrating with the machine learning method. This work represents a step toward the design and use of neuromorphic electronic skin with artificial intelligence for robotics and prosthetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.