Abstract
Flexible tactile neuromorphic devices are becoming important as the impetus for the development of human-machine collaboration. However, accomplishing and further transcending human intelligence with artificial intelligence still confront many barriers. Here, we present a self-powered stretchable three-dimensional remote tactile device (3D-RTD) that performs the depth-of-field (DOF) sensation of external mechanical motions through a conductive-dielectric heterogeneous structure. The device can build a logic relationship precisely between DOF motions of an external active object and sensory potential signals of bipolar sign, frequency, amplitude, etc. The sensory mechanism is revealed on the basis of the electrostatic theory and multiphysics modeling, and the performance is verified via an artificial-biological hybrid system with micro/macroscale interaction. The feasibility of the 3D-RTD as an obstacle-avoidance patch for the blind is systematically demonstrated with a rat. This work paves the way for multimodal neuromorphic device that transcends the function of a biological one toward a new modality for brain-like intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.