Abstract

Prostate cancer (PCa) is the most commonly diagnosed type of cancer in men in western industrialized countries. As a public health burden, the need for the invention of new cost-saving PCa immunotherapies is apparent. In this study, we present a DNA vaccine encoding for the prostate-specific antigen prostatic acid phosphatase (PAP) linked to the J-domain and the SV40 enhancer sequence. The PAP DNA vaccine induced a strong PAP-specific cellular immune response after electroporation (EP)-based delivery in C57BL/6 mice. Splenocytes from mice immunized with PAP recognized the naturally processed PAP epitopes, indicating that vaccination with the PAP-J gene broke its self-tolerance against PAP. Remarkably, DNA vaccination with PAP-J inhibited tumor growth in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse model that closely resembled human PCa. Therefore, this study highlights a novel cancer immunotherapy approach with the potential to control PCa in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.