Abstract
BackgroundIn the pediatric intensive care unit (PICU), quantifying illness severity can be guided by risk models to enable timely identification and appropriate intervention. Logistic regression models, including the pediatric index of mortality 2 (PIM-2) and pediatric risk of mortality III (PRISM-III), produce a mortality risk score using data that are routinely available at PICU admission. Artificial neural networks (ANNs) outperform regression models in some medical fields.ObjectiveIn light of this potential, we aim to examine ANN performance, compared to that of logistic regression, for mortality risk estimation in the PICU.MethodsThe analyzed data set included patients from North American PICUs whose discharge diagnostic codes indicated evidence of infection and included the data used for the PIM-2 and PRISM-III calculations and their corresponding scores. We stratified the data set into training and test sets, with approximately equal mortality rates, in an effort to replicate real-world data. Data preprocessing included imputing missing data through simple substitution and normalizing data into binary variables using PRISM-III thresholds. A 2-layer ANN model was built to predict pediatric mortality, along with a simple logistic regression model for comparison. Both models used the same features required by PIM-2 and PRISM-III. Alternative ANN models using single-layer or unnormalized data were also evaluated. Model performance was compared using the area under the receiver operating characteristic curve (AUROC) and the area under the precision recall curve (AUPRC) and their empirical 95% CIs.ResultsData from 102,945 patients (including 4068 deaths) were included in the analysis. The highest performing ANN (AUROC 0.871, 95% CI 0.862-0.880; AUPRC 0.372, 95% CI 0.345-0.396) that used normalized data performed better than PIM-2 (AUROC 0.805, 95% CI 0.801-0.816; AUPRC 0.234, 95% CI 0.213-0.255) and PRISM-III (AUROC 0.844, 95% CI 0.841-0.855; AUPRC 0.348, 95% CI 0.322-0.367). The performance of this ANN was also significantly better than that of the logistic regression model (AUROC 0.862, 95% CI 0.852-0.872; AUPRC 0.329, 95% CI 0.304-0.351). The performance of the ANN that used unnormalized data (AUROC 0.865, 95% CI 0.856-0.874) was slightly inferior to our highest performing ANN; the single-layer ANN architecture performed poorly and was not investigated further.ConclusionsA simple ANN model performed slightly better than the benchmark PIM-2 and PRISM-III scores and a traditional logistic regression model trained on the same data set. The small performance gains achieved by this two-layer ANN model may not offer clinically significant improvement; however, further research with other or more sophisticated model designs and better imputation of missing data may be warranted.
Highlights
BackgroundThe use of risk models in medicine enables timely and more targeted interventions for a given patient and facilitates benchmarking quality of care and conduct of clinical studies [1]
The highest performing Artificial neural networks (ANNs) (AUROC 0.871, 95% CI 0.862-0.880; area under the precision recall curve (AUPRC) 0.372, 95% CI 0.345-0.396) that used normalized data performed better than pediatric index of mortality 2 (PIM-2) (AUROC 0.805, 95% CI 0.801-0.816; AUPRC 0.234, 95% CI 0.213-0.255) and PRISM-III (AUROC 0.844, 95% CI 0.841-0.855; AUPRC 0.348, 95% CI 0.322-0.367)
The performance of this ANN was significantly better than that of the logistic regression model (AUROC 0.862, 95% CI 0.852-0.872; AUPRC 0.329, 95% CI 0.304-0.351)
Summary
BackgroundThe use of risk models in medicine enables timely and more targeted interventions for a given patient and facilitates benchmarking quality of care and conduct of clinical studies [1]. Two commonly encountered pediatric risk scores are the pediatric index of mortality 2 (PIM-2) [2] and pediatric risk of mortality III (PRISM-III) [1] Both are derived from logistic regression models, which estimate mortality risk and have been validated with respective areas under the receiver operating characteristic curves (AUROCs) of 0.90 and 0.89 [1,7]. In the pediatric intensive care unit (PICU), quantifying illness severity can be guided by risk models to enable timely identification and appropriate intervention. Logistic regression models, including the pediatric index of mortality 2 (PIM-2) and pediatric risk of mortality III (PRISM-III), produce a mortality risk score using data that are routinely available at PICU admission. Artificial neural networks (ANNs) outperform regression models in some medical fields
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.