Abstract

Despite several decades of artificial neural network reserach in other engineering disciplines, only recently work has been reported on its use as a prediction tool in petroleum engineering applications. Existing methods for the prediction of fluid flow in porous medium include numerical simulation techniques and laboratory core flood experiments. Both of these methods are generally expensive and time consuming. However, neural networks, once successfully trained, can be used to predict reservoir performance in a short time with a personal computer. An artificial neural network was developed using data obtained from fine-mesh numerical simulation to predict the breakthrough oil recovery of immiscible displacement of oil by water in a two-dimensional vertical cross section. The network is able to predict the results of the fine-mesh numerical simulations without actually performing these simulation runs. Various neural network connections were investigated using the back-propagation with momentum algorithm for error minimization. This paper describes the design, development, and testing of the neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.