Abstract

The HERMES time-of-flight (TOF) system is used for proton identification, but must be carefully calibrated for systematic biases in the equipment. This paper presents an artificial neural network (ANN) trained to recognize protons from Λ° decay using only raw event data such as time delay, momentum, and trajectory. To avoid the systematic errors associated with Monte Carlo models, we collect a sample of raw experimental data from the year 2000. We presume that when for a positive hadron (assigned one proton mass) and a negative hadron (assigned one π− mass) the reconstructed invariant mass lies within the Λ° resonance, the positive hadron is more likely to be a proton. Such events are assigned an output value of one during the training process; all others were assigned the output value zero.The trained ANN is capable of identifying protons in independent experimental data, with an efficiency equivalent to the traditional TOF calibration. By modifying the threshold for proton identification, a researcher can trade off between selection efficiency and background rejection power. This simple and convenient method is applicable to similar detection problems in other experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.