Abstract

A combined deep machine learning (DML) and collocation based approach to solve the partial differential equations using artificial neural networks is proposed. The developed method is applied to solve problems governed by the Sine–Gordon equation (SGE), the scalar wave equation and elasto-dynamics. Two methods are studied: one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta (RK) time integration. The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples. Based on the results, the relative normalized error was observed to be less than 5% in all cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.