Abstract
Stem water potential seems to be a sensitive measure of plant water status. Nonetheless, it is a labour-intensive measurement and is not suited for automatic irrigation scheduling or control. This study describes the application of artificial neural networks to estimate stem water potential from soil moisture at different depths and standard meteorological variables, considering a limited data set. The experiment was carried out with ‘Navelina’ citrus trees grafted on ‘Cleopatra’ mandarin. Principal components analysis and multiple linear regression were used preliminarily to assess the relationships among observations and to propose other models to allow a comparative analysis, respectively. Two principal components account for the systematic data variation. The optimum regression equation of stem water potential considered temperature, relative humidity, solar radiation and soil moisture at 50cm as input variables, with a determination coefficient of 0.852. When compared with their corresponding regression models, ANNs presented considerably higher performance accuracy (with an optimum determination coefficient of 0.926) due to a higher input-output mapping ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computers and Electronics in Agriculture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.