Abstract
Prediction of operating parameters as a function of brake thermal efficiency (BTHE), brake specific fuel consumption (BSFC), carbon monoxide (CO), Hydrocarbons (HC), nitrogen oxide (NOX) and Smoke opacity is very important in performance and emission characteristics of the engine. In this study, the effect of operating parameters such as load, blend, compression ratio (CR), injection pressure (IP) and injection timing (IT) on the output responses above mentioned were investigated by using ANN (Artificial neural networks) and trained the signal- to- noise ratio (S/N) results obtained from Taguchi L16 orthogonal design. These results are compared with the artificial neural network and confirmation test was conducted and the results obtained were well supported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Sustainable Development Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.