Abstract

The aim of this study was to develop a computer vision algorithm based on artificial intelligence, designed to automatically detect and classify various dental restorations on panoramic radiographs. A total of 738 dental restorations in 83 anonymized panoramic images were analyzed. Images were automatically cropped to obtain the region of interest containing maxillary and mandibular alveolar ridges. Subsequently, the restorations were segmented by using a local adaptive threshold. The segmented restorations were classified into 11 categories, and the algorithm was trained to classify them. Numerical features based on the shape and distribution of gray level values extracted by the algorithm were used for classifying the restorations into different categories. Finally, a Cubic Support Vector Machine algorithm with Error-Correcting Output Codes was used with a cross-validation approach for the multiclass classification of the restorations according to these features. The algorithm detected 94.6% of the restorations. Classification eliminated all erroneous marks, and ultimately, 90.5% of the restorations were marked on the image. The overall accuracy of the classification stage in discriminating between the true restoration categories was 93.6%. This machine-learning algorithm demonstrated excellent performance in detecting and classifying dental restorations on panoramic images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.