Abstract
The production of near- and off-shore fisheries in South Korea is decreasing due to rapid changes in the fishing environment, particularly including higher sea temperature in recent years. To improve the competitiveness of the fisheries, it is necessary to provide fish catch information that changes spatiotemporally according to the sea state. In this study, artificial intelligence models that predict the CPUE (catch per unit effort) of mackerel, anchovies, and squid (Todarodes pacificus), which are three major fish species in the nearand off-shore areas of South Korea, on a 15-km grid and daily basis were developed. The models were trained and validated using the sea surface temperature, rainfall, relative humidity, pressure, sea surface wind velocity, significant wave height, and salinity as input data, and the fish catch statistics of Suhyup (National Federation of Fisheries Cooperatives) as observed data. The 10-fold blind test results showed that the developed artificial intelligence models exhibited accuracy with a corresponding correlation coefficient of 0.86. It is expected that the fish catch models can be actually operated with high accuracy under various sea conditions if high-quality large-volume data are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.