Abstract

Aortopathies are a series of disorders requiring multiple indicators to assess risk. Time-averaged wall shear stress (TAWSS) is currently considered as the primary indicator of aortopathies progression, which can only be calculated by Computational Fluid Dynamics (CFD). However, CFD's complexity and high computational cost, greatly limit its application. The study aimed to construct a deep learning platform which could accurately estimate TAWSS in ascending aorta. A total of 154 patients who had thoracic computed tomography angiography were included and randomly divided into two parts: training set (90%, n = 139) and testing set (10%, n = 15). TAWSS were calculated via CFD. The artificial intelligence (AI)-based model was trained and assessed using the dice coefficient (DC), normalized mean absolute error (NMAE), and root mean square error (RMSE). Our AI platform brought into correspondence with the manual segmentation (DC = 0.86) and the CFD findings (NMAE, 7.8773% ± 4.7144%; RMSE, 0.0098 ± 0.0097), while saving 12000-fold computational cost. The high-efficiency and robust AI platform can automatically estimate value and distribution of TAWSS in ascending aorta, which may be suitable for clinical applications and provide potential ideas for CFD-based problem solving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.