Abstract

Ideation is a source of innovation and creativity, and is commonly used in early stages of engineering design processes. This paper proposes an integrated approach for enhancing design ideation by applying artificial intelligence and data mining techniques. This approach consists of two models, a semantic ideation network and a visual concepts combination model, which provide inspiration semantically and visually based on computational creativity theory. The semantic ideation network aims to provoke new ideas by mining potential knowledge connections across multiple knowledge domains, and this was achieved by applying “step-forward” and “path-track” algorithms which assist in exploring forward given a concept and in tracking back the paths going from a departure concept through a destination concept. In the visual concepts combination model, a generative adversarial networks model is proposed for generating images which synthesize two distinct concepts. An implementation of these two models was developed and tested in a design case study, which indicated that the proposed approach is able to not only generate a variety of cross-domain concept associations but also advance the ideation process quickly and easily in terms of quantity and novelty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.