Abstract

Estimation of crop water requirements is of paramount importance towards the management of agricultural water resources, which is a major mitigating strategy against the effects of climate change on food security. South Africa water shortage poses a threat on agricultural efficiency. Since irrigation uses about 60% of the fresh water available, it therefore becomes important to optimise the use of irrigation water in order to maximize crop yield at the farm level in order to avoid wastage. In this study, combined application of an artificial neural network (ANN) and a crop – growth simulation model for the estimation of crop irrigation water requirements and the irrigation scheduling of potatoes at Winterton irrigation scheme, South Africa was investigated. The crop-water demand from planting to harvest date, when to irrigate, the optimum stage in the drying cycle when to apply water and the amount of irrigation water to be applied per time, were estimated in this study. Five feed –forward backward propagation artificial neural network predictive models were developed with varied number of neurons and hidden layers and evaluated. The optimal ANN model, which has 5 inputs, 5 neurons, 1 hidden layer and 1 output was used to predict monthly reference evapotranspiration (ETo) in the Winterton area. The optimal ANN model produced a root-mean-square error (RMSE) of 0.67, Pearson correlation coefficient (r) of 0.97 and coefficient of determination (R2) of 0.94. The validation of the model between the measured and predicted ETo shows a r value of 0.9048. The predicted ETo was one of the input variables into a crop growth simulation model, called CROPWAT. The results indicated that the total crop water requirement was 1259.2 mm/decade and net irrigation water requirement was 1276.9 mm/decade, spread over a 5-day irrigation time during the entire 140 days of cropping season for potatoes. A combination of the artificial neural networks and the crop growth simulation models have proved to be a robust technique for estimating crop irrigation water requirements in the face of limited or no daily meteorological datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.