Abstract
Image Enhancement is a crucial phase in almost every image processing system. It aims at improving both the visual and the informational quality of distorted images. Histogram Equalization (HE) techniques are the most popular approaches for image enhancement for they succeed in enhancing the image and preserving its main characteristics. However, using exhaustive approaches for histogram equalisation is an algorithmically complex task. These HE techniques also fail in offering good enhancement if not so good parameters are chosen. So, new intelligent approaches, using Artificial Intelligence techniques, have been proposed for image enhancement. In this context, this paper proposes a new Artificial Bee Colony (ABC) algorithm for image contrast enhancement. A grey-level mapping technique and a new image quality measure are used. The algorithm has been tested on some test images, and the comparisons of the obtained results with the genetic algorithm have proven its superiority. Moreover, the proposed algorithm has been extended to colour image enhancement and given very promising results. Further qualitative and statistical comparisons of the proposed ABC to the Cuckoo Search (CS) algorithm are also presented in the paper; not only for the adopted grey-level mapping technique, but also with using another common transformation, generally called the local/global transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.