Abstract

BackgroundAttenuation correction is one of the most important steps in producing quantitative PET image data. In hybrid PET-MRI systems, this correction is far from trivial, as MRI data are not correlated to PET attenuation properties of the scanned object. Commercially available systems often employ correction schemes based on segmenting the body into different tissue classes (air, lung tissue, fat-, and water-like soft tissue), e.g. by using a dual time-point Dixon sequence. However, several pitfalls are known for this approach. Here a specific artefact of MR-based PET attenuation correction is reported, caused by misidentifying the liver as lung tissue due to iron overload.Case presentationA patient with a history of hematopoietic stem cell transplantation underwent a whole-body [18F]FDG PET-MRI scan. Markedly low liver uptake values were noted in the PET images, seemingly caused by an erroneous assignment of lung tissue attenuation values to the liver. A closer investigation demonstrated markedly low MRI intensity values of the liver, indicative of secondary hemochromatosis (iron overload) most probably due to a history of multiple blood transfusions. Manual assignment of adequate liver attenuation values resulted in more realistic PET images.ConclusionsIron overload of the liver was identified as a cause of a specific attenuation correction artefact. It remains to be seen how frequent this artefact will be encountered; however, this case highlights that attenuation maps should always be checked during PET image interpretation in hybrid PET-MRI.

Highlights

  • Attenuation correction is one of the most important steps in producing quantitative Positron emission tomography (PET) image data

  • Iron overload of the liver was identified as a cause of a specific attenuation correction artefact

  • It remains to be seen how frequent this artefact will be encountered; this case highlights that attenuation maps should always be checked during PET image interpretation in hybrid PET-Magnetic resonance imaging (MRI)

Read more

Summary

Conclusions

Iron overload of the liver was identified as a cause of a specific attenuation correction artefact.

Background
Discussion and conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.