Abstract

An increasing number of programming languages, such as Fortran 90 and APL, are providing a rich set of intrinsic array functions and array expressions. These constructs which constitute an important part of data parallel languages provide excellent opportunities for compiler optimizations. In this paper, we present a new approach to combine consecutive data access patterns of array constructs into a composite access function to the source arrays. Our scheme is based on the composition of access functions, which is similar to a composition of mathematic functions. Our new scheme can handle not only data movements of arrays of different numbers of dimensions and segmented array operations but also masked array expressions and multiple sources array operations. As a result, our proposed scheme is the first synthesis scheme which can synthesize Fortran 90 RESHAPE, EOSHIFT, MERGE, and WHERE constructs together. Experimental results show speedups from 1.21 to 2.95 for code fragments from real applications on a Sequent multiprocessor machine by incorporating the proposed optimizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.