Abstract

Harmful algal blooms (HABs) are an emerging environmental problem contaminating water resources and disrupting the balance of the ecosystems. HABs are caused by the sudden growth of photosynthetic algal cells in both fresh and marine water, and have been expanding in extent and appearing more frequently due to the climate change and population growth. Despite the urgency of the problem, the exact environmental conditions that trigger HABs are unknown. This is in part due to the lack of high throughput tools for screening environmental parameters in promoting the growth of photosynthetic microorganisms. In this article, we developed an array microhabitat device with well defined dual nutrient gradients suitable for quantitative studies of multiple environmental parameters in microalgal cell growth. This device enabled an ability to provide 64 different nutrient conditions [nitrogen (N), phosphorous (P), and N : P ratio] at the same time, and the gradient generation took less than 90 min, advancing the current pond and test tube assays in terms of time and cost. Using a photosynthetic algal cell line, Chlamydomonas reinhardtii, preconditioned in co-limited media, we revealed that N and P synergistically promoted cell growth. Interestingly, no discernible response was observed when single P or N gradient was imposed. Our work demonstrated the enabling capability of the microfluidic platform for screening effects of multiple environmental factors in photosynthetic cell growth, and highlighted the importance of the synergistic roles of environmental factors in algal cell growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call