Abstract
Abstract A linear reduced-order aerodynamic model is developed for aeroelastic analysis of turbomachines. The basis vectors are constructed using a block Arnoldi method. Although the model is cast in the time domain in state-space form, the spatial periodicity of the problem is exploited in the frequency domain to obtain these vectors efficiently. The frequency domain proper orthogonal decomposition is identified as a special case of the Arnoldi method. We show an application where the aerodynamic model is coupled with a simple structural model that has two degrees of freedom for each blade. The technique is applicable to viscous and three-dimensional problems as well as multi-stage problems with inlet and exit disturbance flows, although here results are presented for two-dimensional, inviscid flow through a 20-blade single-stage rotor. In this case, the number of states of the model is on the order of 10 per blade passage, making it appropriate for control applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.