Abstract

The valuative criterion for proper maps of schemes has many applications in arithmetic, e.g. specializing Qp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {Q}_{p}$$\\end{document}-points to Fp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {F}_{p}$$\\end{document}-points. For algebraic stacks, the usual valuative criterion for proper maps is ill-suited for these kind of arguments, since it only gives a specialization point defined over an extension of the residue field, e.g. a Qp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {Q}_{p}$$\\end{document}-point will specialize to an Fpn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {F}_{p^{n}}$$\\end{document}-point for some n. We give a new valuative criterion for proper maps of tame stacks which solves this problem and is well-suited for arithmetic applications. As a consequence, we prove that the Lang–Nishimura theorem holds for tame stacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call