Abstract

Abstract. Datasets from a 4-year monitoring effort at Lake Peters, a glacier-fed lake in Arctic Alaska, are described and presented with accompanying methods, biases, and corrections. Three meteorological stations documented air temperature, relative humidity, and rainfall at different elevations in the Lake Peters watershed. Data from ablation stake stations on Chamberlin Glacier were used to quantify glacial melt, and measurements from two hydrological stations were used to reconstruct continuous discharge for the primary inflows to Lake Peters, Carnivore and Chamberlin creeks. The lake's thermal structure was monitored using a network of temperature sensors on moorings, the lake's water level was recorded using pressure sensors, and sedimentary inputs to the lake were documented by sediment traps. We demonstrate the utility of these datasets by examining a flood event in July 2015, though other uses include studying intra- and inter-annual trends in this weather–glacier–river–lake system, contextualizing interpretations of lake sediment cores, and providing background for modeling studies. All DOI-referenced datasets described in this paper are archived at the National Science Foundation Arctic Data Center at the following overview web page for the project: https://arcticdata.io/catalog/view/urn:uuid:df1eace5-4dd7-4517-a985-e4113c631044 (last access: 13 October 2019; Kaufman et al., 2019f).

Highlights

  • Arctic glacier-fed lakes are complex and dynamic systems that are influenced by diverse physical processes

  • We present the results of a 4-year instrumentation campaign in the watershed of Lake Peters, a large glacierfed lake located in the northeastern Brooks Range within Alaska’s Arctic National Wildlife Refuge

  • The meteorological, glaciological, fluvial, and lacustrine datasets from Lake Peters and its catchment presented in this paper offer a unique and valuable opportunity to study an Arctic glacier-fed lake system

Read more

Summary

Introduction

Arctic glacier-fed lakes are complex and dynamic systems that are influenced by diverse physical processes. Long-term instrumental datasets that document how weather and climate impact glaciers, basin hydrology, and sediment transport through rivers and lakes are rare, especially in the Arctic. Such datasets are critical for studying how Arctic glacier– river–lake catchments operate as a system, for understanding the processes that control sediment accumulation in lakes, and for contextualizing modern climatic and environmental change relative to past centuries. We present the results of a 4-year instrumentation campaign in the watershed of Lake Peters, a large glacierfed lake located in the northeastern Brooks Range within Alaska’s Arctic National Wildlife Refuge. Broadman et al.: An Arctic watershed observatory at Lake Peters, Alaska

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.