Abstract

Learning style (LS) is a description of the attitudes and behaviors which determine an individual’s preferred way of learning. Since each student has different LS, it is important for the teacher to recognize the differences in LS. Thus, an appropriate technique to detect students' LS, improve the motivation and academic achievement are required. The common approach using questionnaires to identify LS is less accurate due to complete the questionnaire is a tedious task for students and tend to choose answers randomly without understanding the questions. Emotions such as anger, sadness, and happiness resulting the different questionnaire answers. Due to the approach constrains, this study has focused on automated approaches that identify student LS from student behavior in the learning process. Implementation of decision support system (DSS) as automated application systems is needed to help teachers make decisions in determining students' LS. Thus, the objective of this study is to propose the architecture of LS detection automatically using decision support system. The development of the architecture is applying the behavioral modelling, that are contained student’s behavior parameters for visual-auditory-kinesthetic (VAK) model. Evaluation of the architecture is tested with the precision DSS engine. The accuracy of the rule technique achieves significant 80% accuracy. This study aims to help teachers to identify the ability of the student through the learning style (LS) in order to create effectiveness of learning and improving student’s achievement indirectly.
 Keywords— decision support system, reasoning engines, learning style detection, user behavior, visual-auditory-kinesthetic (VAK) model

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.