Abstract
Robots are an important part of urban search and rescue tasks. World wide attention has been given to developing capable physical platforms that would be beneficial for rescue teams. It is evident that use of multi-robots increases the effectiveness of these systems. The Robot Operating System (ROS) is becoming a standard platform for the robotics research community for both physical robots and simulation environments. Gazebo, with connectivity to the ROS, is a three-dimensional simulation environment that is also becoming a standard. Several simultaneous localization and mapping algorithms are implemented in the ROS; however, there is no multi-robot mapping implementation. In this work, two multi-robot mapping algorithm implementations are presented, namely multi-robot gMapping and multi-robot Hector Mapping. The multi-robot implementations are tested in the Gazebo simulation environment. Also, in order to achieve a more realistic simulation, every incremental robot movement is modeled with rotational and translational noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.