Abstract
The Web provides a huge source of information, also on medical and health-related issues. In particular the content of medical social media data can be diverse due to the background of an author, the source or the topic. Diversity in this context means that a document covers different aspects of a topic or a topic is described in different ways. In this paper, we introduce an approach that allows to consider the diverse aspects of a search query when providing retrieval results to a user. We introduce a system architecture for a diversity-aware search engine that allows retrieving medical information from the web. The diversity of retrieval results is assessed by calculating diversity measures that rely upon semantic information derived from a mapping to concepts of a medical terminology. Considering these measures, the result set is diversified by ranking more diverse texts higher. The methods and system architecture are implemented in a retrieval engine for medical web content. The diversity measures reflect the diversity of aspects considered in a text and its type of information content. They are used for result presentation, filtering and ranking. In a user evaluation we assess the user satisfaction with an ordering of retrieval results that considers the diversity measures. It is shown through the evaluation that diversity-aware retrieval considering diversity measures in ranking could increase the user satisfaction with retrieval results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.