Abstract

A key aspect of technical debt (TD) management is the ability to measure the amount of principal accumulated in a system. The current literature contains an array of approaches to estimate TD principal, however, only a few of them focus specifically on architectural TD, but none of them satisfies all three of the following criteria: being fully automated, freely available, and thoroughly validated. Moreover, a recent study has shown that many of the current approaches suffer from certain shortcomings, such as relying on hand-picked thresholds. In this paper, we propose a novel approach to estimate architectural technical debt principal based on machine learning and architectural smells to address such shortcomings. Our approach can estimate the amount of technical debt principal generated by a single architectural smell instance. To do so, we adopt novel techniques from Information Retrieval to train a learning-to-rank machine learning model (more specifically, a gradient boosting machine) that estimates the severity of an architectural smell and ensure the transparency of the predictions. Then, for each instance, we statically analyse the source code to calculate the exact number of lines of code creating the smell. Finally, we combine these two values to calculate the technical debt principal. To validate the approach, we conducted a case study and interviewed 16 practitioners, from both open source and industry, and asked them about their opinions on the TD principal estimations for several smells detected in their projects. The results show that for 71% of instances, practitioners agreed that the estimations provided were <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">representative</i> of the effort necessary to refactor the smell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.