Abstract

Abstract We develop an arbitrary-order primal method for diffusion problems on general polyhedral meshes. The degrees of freedom are scalar-valued polynomials of the same order at mesh elements and faces. The cornerstone of the method is a local (elementwise) discrete gradient reconstruction operator. The design of the method additionally hinges on a least-squares penalty term on faces weakly enforcing the matching between local element- and face-based degrees of freedom. The scheme is proved to optimally converge in the energy norm and in the L2 -norm of the potential for smooth solutions. In the lowest-order case, equivalence with the Hybrid Finite Volume method is shown. The theoretical results are confirmed by numerical experiments up to order 4 on several polygonal meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.