Abstract
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics, both in time and space, which include the relaxation schemes by Jin and Xin. These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case. These kinetic models depend on a small parameter that can be seen as a “Knudsen” number. The method is asymptotic preserving in this Knudsen number. Also, the computational costs of the method are of the same order of a fully explicit scheme. This work is the extension of Abgrall et al. (2022) [3] to multi-dimensional systems. We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications on Applied Mathematics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.