Abstract

Plastids have evolved from an endosymbiosis between a cyanobacterial symbiont and a eukaryotic host cell. Their division is mediated both by proteins of the host cell and conserved bacterial division proteins. Here, we identified a new component of the plastid division machinery, Arabidopsis thaliana SulA. Disruption of its cyanobacterial homolog (SSulA) in Synechocystis and overexpression of an AtSulA-green fluorescent protein fusion in Arabidopsis demonstrate that these genes are involved in cell and plastid division, respectively. Overexpression of AtSulA inhibits plastid division in planta but rescues plastid division defects caused by overexpression of AtFtsZ1-1 and AtFtsZ2-1, demonstrating that its role in plastid division may involve an interaction with AtFtsZ1-1 and AtFtsZ2-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.