Abstract

Targeted membrane protein degradation (TMPD) offers significant therapeutic potential by enabling the removal of harmful membrane-anchored proteins and facilitating detailed studies of complex biological pathways. However, existing TMPD methodologies face challenges such as complex molecular architectures, scarce availability, and cumbersome construction requirements. To address these issues, this study presents a highly efficient TMPD system (TMPDS) that integrates an optimized bivalent aptamer glue with a potent protein transport shuttle. Utilizing this approach, we successfully degraded both the highly expressed protein tyrosine kinase 7 in CCRF-CEM cells and the poorly expressed PTK7 in MV-411 cells. This system represents significant advancement in the field of molecular medicine, offering a new avenue for targeted therapeutic interventions and the exploration of cellular mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.