Abstract

Facing unprecedented population-ageing, the management of noncommunicable diseases (NCDs) urgently needs a point-of-care (PoC) testing infrastructure. Magnetic flow cytometers are one such solution for rapid cancer cellular detection in a PoC setting. In this work, we report a giant magnetoresistive spin-valve (GMR SV) biosensor array with a multi-stripe sensor geometry and matched filtering to improve detection accuracy without compromising throughput. The carefully designed sensor geometry generates a characteristic signature when cells labeled with magnetic nanoparticles (MNPs) pass by thus enabling multi-parametric measurement like optical flow cytometers (FCMs). Enumeration and multi-parametric information were successfully measured across two decades of throughput (37 — 2730 cells/min). 10-μm polymer microspheres were used as a biomimetic model where MNPs and MNP-decorated polymer conjugates were flown over the GMR SV sensor array and detected with a signal-to-noise ratio (SNR) as low as 2.5 dB due to the processing gain afforded by the matched filtering. The performance was compared against optical observation, exhibiting a 92% detection efficiency. The system achieved a 95% counting accuracy for biomimetic models and 98% for aptamer-based pancreatic cancer cell detection. This system demonstrates the ability to perform reliable flow cytometry toward PoC diagnostics to benefit NCD control plans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call