Abstract

BackgroundBerberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations. ResultsWe successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780–50.0 μg mL–1 and a limit of detection of 0.369 μg mL−1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision. SignificanceThis study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.