Abstract
Wiener deconvolution is generally used to improve resolution of the seismic sections, although it has several important assumptions. I propose a new method named Gold deconvolution to obtain Earth’s sparse-spike reflectivity series. The method uses a recursive approach and requires the source waveform to be known, which is termed as Deterministic Gold deconvolution. In the case of the unknown wavelet, it is estimated from seismic data and the process is then termed as Statistical Gold deconvolution. In addition to the minimum phase, Gold deconvolution method also works for zero and mixed phase wavelets even on the noisy seismic data. The proposed method makes no assumption on the phase of the input wavelet, however, it needs the following assumptions to produce satisfactory results: (1) source waveform is known, if not, it should be estimated from seismic data, (2) source wavelet is stationary at least within a specified time gate, (3) input seismic data is zero offset and does not contain multiples, and (4) Earth consists of sparse spike reflectivity series. When applied in small time and space windows, the Gold deconvolution algorithm overcomes nonstationarity of the input wavelet. The algorithm uses several thousands of iterations, and generally a higher number of iterations produces better results. Since the wavelet is extracted from the seismogram itself for the Statistical Gold deconvolution case, the Gold deconvolution algorithm should be applied via constant-length windows both in time and space directions to overcome the nonstationarity of the wavelet in the input seismograms. The method can be extended into a two-dimensional case to obtain time-and-space dependent reflectivity, although I use one-dimensional Gold deconvolution in a trace-by-trace basis. The method is effective in areas where small-scale bright spots exist and it can also be used to locate thin reservoirs. Since the method produces better results for the Deterministic Gold deconvolution case, it can be used for the deterministic deconvolution of the data sets with known source waveforms such as land Vibroseis records and marine CHIRP systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.