Abstract
The linear-quadratic (LQ) control problem is considered for a class of infinite-dimensional systems with bounded input and output operators, that are not exponentially stabilizable, but only strongly stabilizable. A sufficient condition for the existence of a minimizing control and of a stabilizing solution to the associated LQ Riccati equation is given. The main contribution of this paper is the convergence of the stabilizing solutions of a sequence of finite-dimensional Riccati equations to the strongly stabilizing solution of the infinite-dimensional Riccati equation. The result is applied to a model of propagation of sound waves in a one-dimensional wave-guide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.